544 research outputs found

    Dual Constraint Problem Optimization Using A Natural Approach: Genetic Algorithm and Simulated Annealing

    Get PDF
    Constraint optimization problems with multiple constraints and a large solution domain are NP hard and span almost all industries in a variety of applications. One such application is the optimization of resource scheduling in a pay per use grid environment. Charging for these resources based on demand is often referred to as Utility Computing, where resource providers lease computing power with varying costs based on processing speed. Consumers using this resource have time and cost constraints associated with each job they submit. Determining the optimal way to divide the job among the available resources with regard to the time and cost constraints is tasked to the Grid Resource Broker (GRB). The GRB must use an optimization algorithm that returns an accurate result in a timely mam1er. The Genetic Algorithm and the Simulated Annealing algorithm can both be used to achieve this goal, although Simulated Annealing outperforms the Genetic Algorithm for use by the GRB. Determining optimal values for the variables used in each algorithm is often achieved through trial and error, and success depends upon the solution domain of the problem. Although this work outlines a specific grid resource allocation application, the results can be applied to any optimization problem based on dual constraints

    Performance of an environmental test to detect Mycobacterium bovis infection in badger social groups

    Get PDF
    A study by Courtenay and others (2006) demonstrated that the probability of detecting Mycobacterium bovis by PCR in soil samples from the spoil heaps of main badger setts correlated with the prevalence of excretion (infectiousness) of captured badgers belonging to the social group. It has been proposed that such a test could be used to target badger culling to setts containing infectious animals (Anon 2007). This short communication discusses the issues surrounding this concept, with the intention of dispelling any misconceptions among relevant stakeholders (farmers, policy makers and conservationists)

    Population Dynamics Of A Diverse Rodent Assemblage In Mixed Grass-Shrub Habitat, Southeastern Colorado, 1995–2000

    Get PDF
    We followed seasonal and year-to-year population dynamics for a diverse rodent assemblage in a short-grass prairie ecosystem in southeastern Colorado (USA) for 6 yr. We captured 2,798 individual rodents (range, one to 812 individuals per species) belonging to 19 species. The two most common species, deer mice (Peromyscus maniculatus) and western harvest mice (Reithrodontomys megalotis), generally had population peaks in winter and nadirs in summer; several other murid species demonstrated autumn peaks and spring nadirs; heteromyids were infrequently captured in winter, and populations generally peaked in summer or autumn. Interannual trends indicated an interactive effect between temperature and precipitation. Conditions associated with low rodent populations or population declines were high precipitation during cold periods (autumn and winter) and low precipitation during warm periods (spring and summer). Severity of adverse effects varied by species. Heteromyids, for example, were apparently not negatively affected by the hot, dry spring and summer of 2000. Cross-correlations for the temporal series of relative population abundances between species pairs (which are affected by both seasonal and interannual population dynamics) revealed positive associations among most murids and among most heteromyids, but there were negative associations between murids and heteromyids. These results have important implications for those attempting to model population dynamics of rodent populations for purposes of predicting disease risk

    Effect of Intensive Versus Standard Blood Pressure Control on Stroke Subtypes

    Get PDF
    In the SPRINT (Systolic Blood Pressure Intervention Trial), the number of strokes did not differ significantly by treatment group. However, stroke subtypes have heterogeneous causes that could respond differently to intensive blood pressure control. SPRINT participants (N=9361) were randomized to target systolic blood pressures of \u3c120 mm Hg (intensive treatment) compared with \u3c140 mm Hg (standard treatment). We compared incident hemorrhage, cardiac embolism, large- and small-vessel infarctions across treatment arms. Participants randomized to the intensive arm had mean systolic blood pressures of 121.4 mm Hg in the intensive arm (N=4678) and 136.2 mm Hg in the standard arm (N=4683) at one year. Sixty-nine strokes occurred in the intensive arm and 78 in the standard arm when SPRINT was stopped. The breakdown of stroke subtypes across treatment arms included hemorrhagic (intensive treatment, n=6, standard treatment, n=7) and ischemic stroke subtypes (large artery atherosclerosis: intensive treatment n=11, standard treatment, n=13; cardiac embolism: intensive treatment n=11, standard treatment n=15; small artery occlusion: intensive treatment n=8, standard treatment n=8; other ischemic stroke: intensive treatment n=3, standard treatment n=1). Fewer strokes occurred among participants without prior cardiovascular disease in the intensive (n=43) than the standard arm (n=61), but the difference did not reach predefined statistical significance level of 0.05 (P=0.09). The interaction between baseline cardiovascular risk factor status and treatment arm on stroke risk did not reach significance (P=0.05). Similar numbers of stroke subtypes occurred in the intensive BP control and standard control arms of SPRINT

    Open-circuit voltage increase of GaSb/GaAs quantum ring solar cells under high hydrostatic pressure

    Get PDF
    Hydrostatic pressure can be used as a powerful diagnostic tool to enable the study of lattice dynamics, defects, impurities and recombination processes in a variety of semiconductor materials and devices. Here we report on intermediate band GaAs solar cells containing GaSb quantum rings which exhibit a 15% increase in open-circuit voltage under application of 8 kbar hydrostatic pressure at room temperature. The pressure coefficients of the respective optical transitions for the GaSb quantum rings, the wetting layer and the GaAs bulk, were each measured to be ~10.5±0.5 meV/kbar. A comparison of the pressure induced and temperature induced bandgap changes highlights the significance of the thermal energy of carriers in intermediate band solar cells

    Atmospheric carbon dioxide variability in the Community Earth System Model : evaluation and transient dynamics during the twentieth and twenty-first centuries

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 4447–4475, doi:10.1175/JCLI-D-12-00589.1.Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-dimensional structure of atmospheric CO2 for several representative concentration pathways (RCPs 4.5 and 8.5) using the Community Earth System Model–Biogeochemistry (CESM1-BGC). CO2 simulated for the historical period was first compared to surface, aircraft, and column observations. In a second step, the evolution of spatial and temporal gradients during the twenty-first century was examined. The mean annual cycle in atmospheric CO2 was underestimated for the historical period throughout the Northern Hemisphere, suggesting that the growing season net flux in the Community Land Model (the land component of CESM) was too weak. Consistent with weak summer drawdown in Northern Hemisphere high latitudes, simulated CO2 showed correspondingly weak north–south and vertical gradients during the summer. In the simulations of the twenty-first century, CESM predicted increases in the mean annual cycle of atmospheric CO2 and larger horizontal gradients. Not only did the mean north–south gradient increase due to fossil fuel emissions, but east–west contrasts in CO2 also strengthened because of changing patterns in fossil fuel emissions and terrestrial carbon exchange. In the RCP8.5 simulation, where CO2 increased to 1150 ppm by 2100, the CESM predicted increases in interannual variability in the Northern Hemisphere midlatitudes of up to 60% relative to present variability for time series filtered with a 2–10-yr bandpass. Such an increase in variability may impact detection of changing surface fluxes from atmospheric observations.The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. G.K.A. acknowledges support of a NOAA Climate and Global Change postdoctoral fellowship. J.T.R., N.M.M., S.C.D., K.L., and J.K.M. acknowledge support of Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle (NSF AGS-1048827, AGS-1021776,AGS-1048890). TheHIPPO Programwas supported byNSF GrantsATM-0628575,ATM-0628519, and ATM-0628388 to Harvard University, University of California (San Diego), and by University Corporation for Atmospheric Research, University of Colorado/ CIRES, by the NCAR and by the NOAAEarth System Research Laboratory. Sunyoung Park, Greg Santoni, Eric Kort, and Jasna Pittman collected data during HIPPO. The ACME project was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under Contract DE-AC02- 05CH11231 as part of the Atmospheric Radiation Measurement Program (ARM), the ARM Aerial Facility, and the Terrestrial EcosystemScience Program. TCCON measurements at Eureka were made by the Canadian Network for Detection of Atmospheric Composition Change (CANDAC) with additional support from the Canadian Space Agency. The Lauder TCCON program was funded by the New Zealand Foundation for Research Science and Technology contracts CO1X0204, CO1X0703, and CO1X0406. Measurements at Darwin andWollongong were supported by Australian Research Council Grants DP0879468 and DP110103118 and were undertaken by David Griffith, Nicholas Deutscher, and Ronald Macatangay. We thank Pauli Heikkinen, Petteri Ahonen, and Esko Kyr€o of the Finnish Meteorological Institute for contributing the Sodankyl€a TCCON data. Measurements at Park Falls, Lamont, and Pasadena were supported byNASAGrant NNX11AG01G and the NASA Orbiting Carbon Observatory Program. Data at these sites were obtained by Geoff Toon, Jean- Francois Blavier, Coleen Roehl, and Debra Wunch.2014-01-0

    Light at night and the risk of breast cancer: Findings from the Sister study

    Get PDF
    Background: Light at night (LAN) may alter estrogen regulation through circadian disruption. High levels of outdoor LAN may increase breast cancer risk, but studies have largely not considered possible residual confounding from correlated environmental exposures. We evaluated the association between indoor and outdoor LAN and incident breast cancer. Methods: In 47,145 participants in the prospective Sister Study cohort living in the contiguous U.S., exposure to outdoor LAN was determined using satellite-measured residential data and indoor LAN was self-reported (light/TV on, light from outside the room, nightlight, no light). We used Cox proportional hazards models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between outdoor and indoor LAN and breast cancer risk. Models were adjusted for age, race/ethnicity, educational attainment, annual household income, neighborhood disadvantage, latitude, and population density as a proxy for urbanicity. To evaluate the potential for residual confounding of the outdoor LAN and breast cancer relationship by factors associated with urbanicity, we considered further adjustment for exposures correlated with outdoor LAN including NO2 [Spearman correlation coefficient, rho (ρ) = 0.78], PM2.5 (ρ = 0.36), green space (ρ = − 0.41), and noise (ρ = 0.81). Results: During 11 years of follow-up, 3,734 breast cancer cases were identified. Outdoor LAN was modestly, but non-monotonically, associated with a higher risk of breast cancer (Quintile 4 vs 1: HR = 1.10, 95% CI: 0.99–1.22; Quintile 5 vs 1: HR = 1.04, 95% CI: 0.93–1.16); however, no association was evident after adjustment for correlated ambient exposures (Quintile 4 vs 1: HR = 0.99, 95% CI: 0.86–1.14; Quintile 5 vs 1: HR = 0.89, 95% CI: 0.74–1.06). Compared to those with no indoor LAN exposure, sleeping with a light or TV on was associated with a HR = 1.09 (95% CI: 0.97–1.23) in the adjusted model. Conclusions: Outdoor LAN does not appear to increase the risk of breast cancer after adjustment for correlated environmental exposures

    The Pan-STARRS Moving Object Processing System

    Full text link
    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table
    corecore